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Abstract 

The superspace-group approach [Janner & Janssen 
(1977), Phys. Rev. B, 15, 643-658] is used to solve 
the symmetry problem of incommensurate crystal 
phases in the case of displacive- and occupation-wave 
modulation. Generalization is given to cover magnetic 
modulation as well. The symmetry conditions imposed 
by the superspace group on the crystal structure are 
derived and applied to the following incommensurate 
crystals, whose structures have been discussed in the 
literature independently from the present point of view: 
K2SeO 4, 2H-TaSe2, NaNO 2 and Cr. The superspace 
groups describing the symmetry of these compounds 
are indicated and the structural implications of the 
corresponding symmetry elements discussed. 

1. Introduction 

There are crystals which at a given phase transition 
undergo a periodic deformation. The existence of such 
a deformation can be seen in their (X-ray, electron or 
neutron) diffraction pattern from the appearance of 
additional Bragg reflection peaks (called satellite 
reflections). When the indices of these satellites in the 
reference system of the other sharp peaks (the main 
reflections) involve irrational numbers, and this is in 
particular the case when the indices change continuously 
with temperature [see e.g. 7-Na2CO 3 as reported by van 
Aalst, den Hollander, Peterse & de Wolff (1976)], the 
crystal phase is called an incommensurate modulated 
structure. In the case of rational indices the term super- 
structure is standard. 

A modulated crystal does not have a three- 
dimensional lattice periodicity. Hence its Euclidean 
symmetry is not a three-dimensional space group. 
However, it is possible, as de Wolff (1974), (1977) and 
we [Janner & Janssen (1977)] have shown, to recover 
space-group symmetry by constructing a periodic 
structure in a suitably defined space such that the 
crystal considered appears as a three-dimensional 
section of it. The higher-dimensional space is called the 
superspace and the constructed periodic structure in it 
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the supercrystal; the additional dimensions introduced 
span the internal space. This name has been adopted 
because often the additional dimensions correspond to 
internal degrees of freedom (like the phase of the 
modulation). 

The Euclidean symmetry of the supercrystal is a 
space group of dimension higher than three. However, 
not all space groups of this dimension are admissible, 
because there are additional requirements which express 
the special role of the three-dimensional subspace called 
position space or external space, in which the positions 
of the modulated crystal are defined. The admitted 
groups are called superspace groups. The mathematical 
theory of these groups can be be found in Janner 
(1977), Janssen (1977) and in a more detailed paper of 
Janner & Janssen (1979). A brief summary of the main 
definitions and properties is given in §2. The loosening 
of the conditions leading to superspace groups is in 
principle possible but, up to now, no experimental 
evidence could be found for justifying a more general 
treatment. 

The aim of this paper is to show the relevance of the 
superspace-group concept for the description of incom- 
mensurate crystal structures. To that end a number of 
modulated crystals are investigated. A modulated 
crystal structure can be characterized by a superspace 
group (just as a normal crystal is described by a three- 
dimensional space group) which is uniquely determined 
by the structure, up to equivalence. Moreover, this 
symmetry group is expected to be of importance for the 
study of other physical properties, but this point is not 
discussed here. 

The concept of a supercrystal is treated in §3, and 
applied in further sections to a number of modulated 
crystal structures. The examples are chosen widely and 
involve displacive modulation in ionic (K2SeO4) or 
metallic layered crystals (TaSe2), occupation wave 
modulation (NaNO2) and spin wave modulation (Cr). 
In this first part we restrict our considerations to 
systems for which a basic structure can be defined 
having a three-dimensional space group as symmetry 
(commensurate basic structure). The case where this is 
no longer possible (incommensurate basic structure) 
will be treated in part II (Janner & Janssen, 1980). 

© 1980 International Union of Crystallography 
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2. Superspaee groups 

Consider a (3 + d)-dimensional Euclidean space which 
is the direct sum of two orthogonal subspaces: the 
three-dimensional posit ion space V E and the d- 
dimensional internal space V r A superspace group, G, 
is a (3 + d)-dimensional space group with d linearly 
independent translations in V 1 which is a subgroup of 
the direct product E(3) x E(d)  of Euclidean groups. 
The latter means that an element of a superspace group 
can be written as a pair: g = (gE, gl), where gE is a 
Euclidean transformation of the position space and gt 
one of the internal space. We denote a Euclidean trans- 
formation by {R Iv }, where R is an orthogonal transfor- 
mation and v a translation, and we write 

g = ( g e ,  g t ) = ( { R e l v E } ,  {Rzlv~})= {RIv}.  (1) 

The elements of the superspace V = V E O) VI and, 
par  abus de language, the translations in V also can be 
written as pairs: v = (v e, vt). A basis for the lattice 27 
of a superspace group can be chosen in the form 

a i : (a i, --bd+i), i = 1,2,3 
and (2) 

a3+y= (0, by), j =  1,2, ..., d, 

where as, a2, a3 form a basis of V E and b l , . . . ,  ba one of 
V r Expressing the internal components of a z in terms of 
the latter one gets a d x 3 matrix tr, 

d 

bd+/= Z aji bj, i =  1, 2, 3. (3) 
j = l  

Hence the lattice 27 is determined by a 1, a 2, a 3 (span- 
ning a lattice A in VE), by b 1 . . . . .  b a (spanning a lattice 
D in Vt) and the matrix tr. 

The reciprocal lattice 27* has a basis 

a* = (a*, 0), i =  1, 2, 3 

and (4) 
~--- a*  a*+y ( 3+j, bjP), j =  1,2 . . . .  , d, 

where {a~', a~', a~} is reciprocal to {al, a2, a3 } in Vr 
and {b*, b*, . . . ,  b~} is reciprocal to {b~, b : , . . . ,  bd} 

, in V r Expressing a*+y in terms of a*, a2, a~' one 
obtains the same matrix a, 

3 

a*+j = Z ¢7ji a*,  j = 1, 2, ..., d. (5) 
i=1 

As we shall explain in the next section the reciprocal 
vectors a* . . . . .  a*+d allow a characterization of the 
Bragg reflection peaks in crystal diffraction, which by 
(4) will be associated with the projection of reciprocal- 
lattice points in (3 + d)-dimensions. In direct space this 
corresponds to taking a section of a corresponding 
periodic pattern defined in superspace. In this con- 
nection the matrix cr plays a fundamental role. 

The point group K of a superspace group has 
elements R which can be written as pairs of orthogonal 

transformations: R = (R E, R1). The elements R E form a 
three-dimensional crystallographic point group K~r in 
V e, the elements Rt a d-dimensional one in V r 

3. The supererystal 

Firstly we extend the concept of a (three-dimensional) 
crystal in order to ensure that an incommensurate 
crystal phase can still be considered as a crystal. We 
define a crystal  as a matter distribution described by a 
scalar density p(r) such that it admits a Fourier 
decomposition 

p(r) = Z P(k) eikr (6) 
k 

with wave vectors k of the form 

3+d 

k = ~. z i a* -- (z 1, z 2, ...,  z3+a) , ,  (7) 
i = l  

where the z i are integers, the a* (i = 1, 2, ..., 3 + d) 
span the three-dimensional space and d is minimal. 
Clearly, for d = 0 this definition reduces to the 
ordinary one and then describes a commensurate  
crystal phase. If d > 0 one gets an incommensurate  
crystal phase.  We adopt the convention that a*, a*, a* 
form a basis for the main reflections. Then a*, ..., a~'+a 
determine the matrix a via (5). 

With the function p(r) describing a crystal in Vg we 
associate, in the way indicated below, a function ~(r, t) 
in V which defines what we call a supercrystaL We 
first assume that one can distinguish in (7) main reflec- 
tions from satellites and that the former belong to a 
lattice A* spanned by a*, a*, a*. Then a matrix tr is 
determined via (5) by the remaining vectors a~', ..., 
a~'+d. One can then choose a lattice D* in the internal 
space and construct, in the way indicated in §2, a lattice 
27* with basis given as in (4). To each vector k of (7) 
there corresponds now exactly one element k of 27* by 

3+d 

k = ~. z ia*  = (k, k,), 
i = l  

with (8) 

d 

k l =  Z Z 3 + j b ~ "  
j = l  

Writing r -- (r,t) for a general vector in V, the 
supercrystal associated with (6) is defined by 

~(r) = ~ ~(k) e ikr, (9) 
k 

where/~(k) oe=f/$(k) and k E 27*. Note that the crystal 
appears as the t -- 0 section of the associated 
supercrystal. 
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The superspace group of ~ is uniquely determined by 
(up to equivalency) and the symmetry condition for 

by g as in (1), 

P(ge r, g, 0 = ~(r, 0, (10) 

is also expressible in terms of the Fourier coefficients of 
p by 

b(k) =/3(k ' )  e irk°, (11) 

where k = (k, kt) and R k  = (k', k~). 

4. Displacive modulation 

Consider a commensurate basic structure, i.e. a 
distribution of points with space-group symmetry.  
Hence the position of these points can be written as 

ro(n, j)  = n + rj, (12) 

where n labels the cell (n E A) and rj the position of the 
j th  point in the unit cell. If go is an element of the space 
group G O , one has the relation 

go r0(n,J) = r0(n',J')" (13) 

A crystal phase with displacive modulation occurs if 
the atomic positions can be described by 

r(n,j) = r0(n,j) + Z fj(q)exp[iq(n + rj)]. (14) 
q 

The modulation is incommensurate if at least one of 
the vectors q does not have a multiple belonging to the 
reciprocal lattice A* of the basic structure. Application 
of (9) gives for the atom positions of the supercrystal 

r(n, j ,  t) = {n + rj + y fj(q) exp[iq(n + rj) + iqt t], t}. 
q 

(15) 

The symmetry  condition for this supercrystal is 
expressible in the form 

gr(n, L t) = r (n ' , j ' ,  t'), for g = (gE, gi). (16) 

This equation implies invariance of the basic structure, 
i.e. the condition 

Re(n + rj) + V E = n' + rj,, (17) 

thus ge C G o, and a corresponding invariance of the 
modulation 

R e fj(q) = fj,(q') exp( iRq .v  + iKrj,), (18) 

where q = (q, qt), q' = Re q + K for some vector K of 
the reciprocal lattice A* (note that K may depend on q 
and R), and v = (v e, vt). Equation (18) is the same as 
(3.16) in Janner & Janssen (1977) if one replaces fj(q) 
by f~(q) exp(iqrj). 

If the crystal contains rigid molecules it is sometimes 
convenient to describe the displacement of each 
molecule by two vectors: one for the displacement of 
the center of mass, one for the rotation around this 
point. The rotation vectors form an axial vector field 
with Fourier components Rj(q). The invariance 
condition for such a modulation is 

R~¢ Rj(q) = (det R~) Rj,(q') exp( iRq.v  + iKrj,). (19) 

The symmetry conditions (17) and (18) imply that 
the symmetry group G is a superspace group. The 
external components gE form a three-dimensirnal space 
group, called the basic space group Gr. Because of 
(17), GF~ is a subgroup of the space group G O of the 
basic structure. Very often both groups Gz and G O 
coincide. The internal components g; do not form a 
d-dimensional space group. It is possible to extract 
from these a d-dimensional space group, but we do not 
need it here. Let us only remark that the homogeneous 
transformations R~ form a d-dimensional crystal- 
lographic point group leaving D invariant. 

5. One-dimensional displaeive modulation: K2SeO 4 

In this section we analyze the structure of K2SeO 4 
using the superspace-group concept. Our analysis is 
based on Iizumi, Axe, Shirane & Shimaoka (1977). The 
compound KzSeO 4 has an incommensurable modulated 
phase between 93 and 128 K. The modulation is of the 
displacive type and can be described starting from a 
basic structure with space-group symmetry Pnam. This 
group is generated by an orthorhombic lattice A and by 
the space-group elements 

{mxlVE(mx)} : (x,y,z) ~ ( - - x  + ½,y + ½, z + ½), 

{mylvE(my)} :(x,y,z)  ~ (x  + ½,--y + ½, z), (20) 

{mzlvE(mz)} "(x,y,z) --, ( x , y , - - z  + ½). 

There are four formula units per unit cell: eight oxygens 
[O(1)] are in general position (d), all other atoms are at 
Wyckoff  positions (e): O(2), O(3), K~, K° and Se. The /J 

modulation is described in the rigid SeO 4 approxa- 
mation and involves 12 displacive modulation waves 
fj(r), ( j  = 1, 2, .. . ,  12) and four rotative ones Rj(r), ( j  = 
1, 2, 3, 4). The satellites due to this modulation are 
characterized by wave vectors qn and q2s with 

% = (1 -- ~)a*/3 and q2~ = a* -- 2q8. (21) 

With respect to the basis a*, b*, e* of A* the vector qs 
1 has components a = 7(1 -- 6),/~ = y = 0. The dimension 

of the internal space is d = 1. As coordinate system in 
superspace we choose the basis a, b, e and e, where e is 
a vector in the internal space. Then a primitive basis for 
the lattice 27 in superspace is 

(1, 0, 0 ,--a) ,  (0,1,0,0), (0,0,1,0)and (0,0,0,1). (22) 
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The Bravais class of this lattice is pemmm [see Janner, r l l  
Janssen & de Wolff (1979)]. The holohedry of this 
lattice is generated by the superspace point-group 
transformations (m x, e = - 1 ) ,  (my, c = 1) and (m~, 8 = 
1), where e = R 1 = + 1. 

Elements of the superspace group G have to fulfil the 
conditions (17), (18) and (19). The first one is satisfied 
if G e is a subgroup of Pnam. For the invariance 
conditions (18) and (19) one uses the fact that the total 
displacement transforms according to the 272 represent- 
ation. The procedure of deriving directly from that 
information the superspace group has already been 
discussed in Janner & Janssen (1977). The point group 
of qa has elements 1, my, m~, 2 x with characters 1, - 1 ,  
- 1 ,  1 respectively, in the 272 representation. For these 
elements K = 0; hence for R = (my, 1) and R = (m z, 1), 
(18) and (19) reduce to 

fj(q) = _fj(q) e-iq, v, 

and (23) 

Rj ( lO=- -R j (q )  e -`¢v,, 

where q = qa. Accordingly, qt = e* and (23) is satisfied 
for vz = ½e. This leads to the following set of 
non-primitive translations [taking (20) also into 
account]: 

v(my, 1) = (½, ½, 0, [1 -- al l2) ,  

v(m~, 1 ) =  (0, 0, ½, ½). (24) 

Finally, we consider R e = --1, which implies R I = - - 1 .  

For this case also, q = q~, and one gets K = 0. Since 
the total displacement transforms according to a 
one-dimensional co-representation it follows that the q~ 
components of the modulation vector fields obey the 
relation 

fJ(q) = -e t~  fi(q) e-"~ *, 

and (25) 
R~(q) = --e i~ Rj(q) e -i '~', .  

Hence there is an element v, = v,(1,[) solving (25). 
Such a non-primitive translation is, however, equiv- 
alent to zero, and can be transformed away by a shift 
of the origin [taken along the x direction to keep (24) 
unchanged]. Consequently, the superspace group for 
KzSeO 4 in the incommmensurate crystal phase is 

pv~_a~ (26) 
1SS " 

This group is generated by the translations (22) and by 
the following superspace-group elements: 

{(mx, i)lv(rnx, i)} :(x,y,z,t) - - , ( - x  + ½,y + ½, z + ½, 
112 - - t - -  ~ ), 

{(my, 1)Iv(my, 1)} : ( x , y , z , t ) ~ ( x  + ½,--y + ½, z, 

t + ½-- ½a), (27) 

{(m s, 1)lv(m~, 1)} :(x,y,z,t) ~ ( x , y , - - z  + ½, t + ½), 

where a general point in the superspace is indicated by 

(x,y,z,t) = xa  + y b  + ze + te. 

As de Wolff has pointed out, the systematic extinc- 
tions due to the superspace group pPnam - iss are only 
approximately observed. The assignment of the modu- 
lation to a 272 representation (as assumed here) has 
therefore to be considered with some caution. 

6. Two-dimensional displacive modulation in a layered 
compound: 2H-TaSe 2 

The example considered here is a metallic layered 
compound with an incommensurate crystal phase 
between 90 and 122 K connected to the presence of a 
charge-density wave (CDW) which gives rise to a 
displacive modulation. The present analysis is based on 
the neutron scattering study of Moncton, Axe & 
DiSalvo (1977). 

The basic structure of 2H-TaSe z has the space-group 
symmetry P63/mmc.  Adopting the hexagonal axes a, b, 
e, this space group is generated by the lattice A 
spanned by this basis and the elements: 

{6zlve(6z)} :(x,y,z)  ~ ( x - -  y , x , z  + ½), 

{mxlvE(mx)} :(x,y,z)  ~ (--x, y - -  x , z  + ½), (28) 

{mzlve(mz)} :(x,y,z)  --, ( x , y , - z  + ½). 

There are two formula units per unit cell with atomic 
positions: 

Ta at (b): rl = (0, 0, - ] ) ,  r2 = (0, 0, ]); 

Sea t  ( f ) : r 3 = ( - ] , - - - ~ , z - l ) , r 4 = ( ] , ] , - z ) ,  (29) 

r ,  = z ) ,  r6 = + ½); 

where z _ 0.18. The modulation vectors q which 
characterize the displacive modulation are linear 
integral combinations of ql and q2 with 

qx = (1 -- b')a*/3 and q2 = - - ( 1  -- 3)b*/3, (30) 

where d is a small, temperature dependent, real 
parameter. Accordingly, the Fourier spectrum of the 
incommensurate phase can be described in terms of 
integral linear combinations of five basis vectors, 
namely 

a * =  a*, a* = b*, a* = e*, a* = ql and a* : - -q2"  (31) 

It follows that the matrix a(5) has the form 

(o0;) tr = (32) 
a 

with a -  (1 - 5)/3. Hence the superspace is (3 + 2)- 
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dimensional, and the lattice £' is generated by 

a I = (1,0,0,-a,0), a 2 = (0,1,0,0,-a), a 3 ----- ( 0 , 0 , 1 , 0 , 0 ) ,  

a 4 = (0,0,0,1,0) and a 5 = (0,0,0,0,1), (33) 

where we denote by ( x , y , z , t , u )  a general point (and a 
position vector) xa + yb + ze + td + ue of the 
superspace with a, b, e basis of A as above in position 
space and d, e basis of a two-dimensional hexagonal 
lattice D in internal subspace. 

The lattice Z' spanned by (33) belongs to the Bravais 
P6/mmm 1 80 class Pp 6 ~ mm [see Janner, Janssen & de Wolff ( 9 )]. 

Its holohedry is generated by the following point-group 
elements: 

R ~ = (6~, 6z) : ( x , y , z , t , u )  --, ( x  - -  y ,  x ,  z ,  t - -  u, t); 

R 2 = (rex, m ~ ) : ( x , y , z , t , u )  - .  ( - - x ,  y - -  x ,  z ,  - t ,  u - t); 

R 3 = ( m z ,  1 ) : ( x , y , z , t , u )  -* ( x ,  y ,  - z ,  t, u). (34) 

To determine the point group and the non-primitive 
translations one uses the fact that the modulation 
function belongs to the Z" 1 representation of P 6 J m m c .  
Denoting by 32 ~ the 120 ° clockwise rotation around c* 
and by T(3; -1) the corresponding operator on the 
displacement field f = (t"1, t"2 . . . .  , f6), one has 

f(q2) = T(3z ~) f(q~) e-ira 

and (35) 

f ( q 3 )  = T(3z 1) f(q2) e-i% 

where q3 : - - q l  - -  q2" Here ~01 and ~02 are the relative 
phases of the modulation wave q2 with respect to that 
of ql and correspondingly of q3 with respect to qz. The 

= = (3z , 3 -1) belongs to the point element R (R e, R,) -1 
group if there is a non-primitive translation v~ = 
vt(321, 3 -1) such that 

T(3z 1) f ' ( q j )  = f ( 3 z  I q j )  et~'J = f(3zlqj) exp(iRt qyt. vt) 

(36) 

fo r j  = 1, 2, where R t = 3 -1 and qlt = b*, q2/= - b * ;  b*, 
b~' is the basis of D* reciprocal to b I = d and b2 = e in 
the internal space. Equation (36) is solved by 

v,(3zl ' 3_1) = _ ¢Pl + ~o2 bl ~01 
2------~ --2-nn b2. (37) 

As next generator of the point group we take R E = my, 
R I = my, where re(my, my) = 0. The £'1 transformation 
property implies 

T(my) f(ql) = f(ql) as my ql = ql; 

furthermore, 

T ( m y )  f(q2) = T ( m y  321) f(ql) e-i'~' 

= T(322) f(ql) e-l'~ = f(q3) e+lo~. 

(38) 

The (my, my) symmetry condition implies for v t = 
vt(my, my) 

f(q,) = f(ql) exp 0~o * v t) 

and (39) 

f(q3) e+t~ = f(q3) exp[- i (  b* - b~') v t] 

and this equation is solved by 

v1(my, my) = ~02b2/2n. (40) 

As third generator we consider R e = m z, R 1 = 1. This is 
a symmetry element with v ( m  z, 1) = 0 since for the £'1 
representation one has 

T ( m z )  f(qj) = f(qj), j =  1, 2, 3 (41) 

because rnzqj = q~. 
All these internal components of non-primitive 

translations can be transformed away by a shift sl of 
the origin in internal space. One verifies that 

v~(R) = v,(R) + (1 - R,) s~ = 0 (42) 

for s t = (1/6n){(2rp 1 + cP2)b 1 + (~Pl - ~°2)b2} and R 
given by (371, 3-1), (my, my) and (m,, 1). By this choice 
of origin the modulation waves ql, q2, q3 all have the 
same phase (~01 = ~02 = 0). 

The element R e = - 1  (which implies R~ = - 1 )  
involves a one-dimensional co-representation, with 
basis e (q , )  which can be chosen such that 

T(i)  e(q l )  = e( -q l )  = e*(q l )  = - e ( q , ) .  (43) 

If we write 

f(q,) = e i° e(q , ) ,  (44) 

the conditions for central inversion symmetry become 

- - b *  v t --: b~' v ,  = ( b *  - -  b~') v ,  - 2q/(rood 2n) .  ( 4 5 )  

These relations allow a solution provided that 

6~ = 0 (mod 2n) (46) 

and in that case v, = (~/n) (--bl + bz). This 
non-primitive translation is also equivalent to zero. 

In conclusion, on the basis of the data reported by 
Moncton, Axe & DiSalvo (1977), two superspace 
groups may occur as the symmetry of the incom- 
mensurate phase of 2H-TaSe2. Either 

Gl = p,,,~2c (47) 
p 3 m hi 

generated by the translations (33) and by the elements 

{ (3 ~, 3) 10 }" ( x , y , z , t , u )  --, ( - -y ,  x --  y ,  z,  - -u ,  t --  u), 

{ (my ,  my) lO } : ( x , y , z , t , u )  --, ( x ,  x --  y ,  z ,  t, t --  u), 

{(mz, 1)1a3/2} " ( x , y , z , t , u )  --, ( x ,  y ,  - - z  + ½, t, u), 

(48) 

or, if condition (46) is satisfied 

6 2  D P  63/m m c 
= ~ p 6  1 m m  (49) 



404 SYMMETRY OF I N C O M M E N S U R A T E  CRYSTAL PHASES.  I 

which is generated by (33), (48) and 

{ ([,  [)10 } : (x,y,z,t,u) --, (--x, --y, --z, --t, --u). (50) 

where q -- (q, q~), q' = R e q + K and q~= R l ~ ,  just  as 
in (18). Actually (56) is the scalar version of that 
equation. 

7. Occupation-wave modulation 

We consider a crystal described in terms of a density 
function p(r) of the form 

m 

p ( r ) =  Z p~(r) pv(r) (51) 
v-----1 

where p~(r) is a density function with space-group 
symmetry G~ [i.e. po(r) describes a commensurate 
crystal] and where p~(r) is some (space-dependent) 
probability function. This happens, for example, in 
crystals where atoms occupy different positions in the 
unit cell according to some probability distribution. 

We speak of occupation waves if the probabilities 
p~(r) are expressible as 

p~(r) = y fi~(q) e iqr (52) 
q 

with q -- Y.~ z t qt involving a finite number of vectors 
q~ only. We assume that the translation lattices Av of 
the space groups G~ are mutually commensurable and, 
for simplicity, we consider the case that they coincide. 
The more general case of different lattices is easily dealt 
with, and the incommensurable case is discussed in part 
II. 

The Fourier transform of p(r) can be obtained by 
convolution from that ofp(r)  and p~(r) 

b(k) = Z Y /3~(k- K) p~(K), (53) 
v=l  KEA* 

* where k - K = ~ ,  zj qj. We denote by a*, a2, a* a 
basis of A* = A ~' . . . . .  A*~, and we consider the case 
where the occupation waves are incommensurate with 
A,  i.e. the vectors qj are incommensurate with A*. 
Putting 

a~'+j = qj, j = 1, 2, ..., d, (54) 

we see that p(r) satisfies the definition for a crystal 
given in §3, and the associated supercrystal ~(r, t) can 
be constructed making use of (9). The symmetry 
condition for ~5 by (ge, gt) given in (10) can be 
expressed as an invariance condition for the crystal 
configurations described by the p~(r) and for the corre- 
sponding probability function p~(r). In particular, in 
the case of a point-atom distribution as above, one gets 
the following set of invariance conditions for g = {R Iv } 
= ({R~,v~), {R, Iv,)): 

and 

Re(n + r j) + v E = n' + rv,j, (55) 

/3v(q) =/3v,(q') exp ( iRq .v  + iKr~,y,, (56) 

8. Occupation waves in NaNO2 

The compound N a N O  2 shows a number of phase 
transitions characterized by the appearance of oc- 
cupation-wave modulation. Our analysis is based on 
the Habilitationsschrift by B6hm (1977). We have left 
out of our considerations the model proposed by 
Kucharczyk,  Pietrasko & Lukaszewicz (1978)in which 
displacive modulation occurs in addition to the oc- 
cupation waves. 

N a N O  2 has four phases: ferroelectric (F: T < T~ -- 
435.8 K), sinusoidal ferroelectric (SF: TI < T < T 2 ~_ 
436 K), antiferroelectric (AF: T 2 < T < T 3 ~ 437 K) 
and paraelectric (P: T 3 < T). The transition temp- 
eratures depend on the thermal treatment of the 
crystal. The phases S F  and A F  are incommensurate. 
The structure of all four phases can be described in 
terms of the two crystal configurations v = 1, 2, both 
having space-group symmetry G~ = G2 = lm2m.  There 
is one formula unit per unit cell with Na  and N ions at 
Wyckoff  position (a) and O ions at position (c). 

Na, j = 1, rlz ~- ( 0 , Y l , 0 ) ,  

N, j =  2, r12 = (0,Y2,0), (57) 

O, j - -  3,4, rl3 ---- (0,Y3,Z3) a n d  r14 - -  (0 ,Y3,--z3) .  

The corresponding positions for the v = 2 configuration 
are obtained by an my mirror transformation. At T = 
435.5 K, one has Yl = 0.541, Y2 - 0-078, Y3 = --0.034 
and z 3 = 0.196. 

In the P phase the probability function Pv is space 
independent and given by Pl = P2 = ½. The correspond- 
ing crystal symmetry is the (three-dimensional) space 
group Immm. In the F phase, also, the probability is 
space independent with occupation of one con- 
figuration only. Accordingly, the space group is l m  2rn. 
In the S F  and A F  phases satellite reflections appear 
characterized by a wave vector 

q = 2aa* ----- (2a,0,0),.  (58) 

The structure of these two phases has been analyzed by 
B6hm (1977) in terms of occupation waves with 
Fourier components 

/31(0 ) =/32(0 ) = ½ in the A F  phase, 

/31(0) = ½ + t , (T ) , /32 (0 )  = ½--  e(T) in the SFphase ,  (59) 

p~(2aa*) = --pz(2aa*) = J in both phases, 

with e(T) "~ 0.08 and 161 _~ 0-105 at 435.5 K. 
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The lattice A* reciprocal to 222I is generated by 

a* = (0,1,I),, a* = (1,0,1), a n d a * =  (1,1,0),. (60) 

Since a4* = (2a,0,0), the matrix cr of (5) is 

o= (-a,a,a). (61) 

The superspace is (3 + 1)-dimensional spanned by the 
orthorhombic (centered) basis a, b, e as above and a 
vector d in the internal space. The superspace groups of 
both phases have lattice symmetry S generated by 

[ ]  1 l,v'~ [1 ] 17v'~ 
al = ~2,~,2,"/, a 2  = I,],~,I,t~I, 

a3  ~,~,~,~,~'/, a 4  = (0,0,0,1), (62) 

where (x,y,z,t) denotes xa + yb + zc + td. From 
Janner, Janssen & de Wolff (1979) it follows that the 
Bravais class of 2; is 

ptmmrn (63) 
i l l  

with holohedry generated by (m x, i), (my, 1) and (m z, 1). 
In order to find the other generators of the 

superspace groups one considers (55) and (56) for each 
element of the holohedry. One verifies that these 
elements satisfy (55). The check of the corresponding 
other equation can be done as follows: 
For (mx, i) one has: v' = v, q' = - q ,  v e = 0 and K = 
0, thus (56) becomes 

^ ,  
/~(q) =p~(q) exp (--iqr vi). (64) 

For q = 0, the relation is satisfied. For q = 2aa*, the 
phase of /~(q) is arbitrary because of the incom- 
mensurability and by choosing/~v(q) real, one gets the 
solution vi(m~,l) = 0. 
For (mz,1), one has v' = v, q' = q, v e = 0 and K = 0; 
and (56) is satisfied with vt(m z, 1) = 0. 
For (my, 1), one has q' = q, v E = 0, K = 0 but v :/: v'. 
Hence (56) becomes 

and 
p~(0) = p:(0) (65) 

pl(2aa*) = P2(2aa*) exp (id*. V,) 

= --/~l(2aa*) exp (id*. vz). 

Only in the AF phase is there a solution: vi(my, 1) = ½d. 
Therefore, the superspace groups for the incom- 
mensurate phases SF and AF are 

GAF=--lslPI-m'nm and Gs e=_ifx.p/m2m (66) 

The group Gsr is generated by the translations (62) and 
by the following superspace-group elements: 

{(mx, i)10} : (x,y,z,t) --, (--x, y, z, - t ) ;  

{(mz,1)lO}:(x,y ,z , t )-- , (x ,y ,-z , t ) .  (67) 

In addition to all these generators the group GAF has 
also 

{(my,1)1½d}:(x,y,z,t)--,(x,--y,z,t +½). (68) 

Notice that in the AF phase the 4-vector (h,O,l,m), 
(which is ha* + lc* + mq, h, 1, m integers) is left 
invariant by (my,l). Hence the non-primitive trans- 
lation vt(my, 1) = ½d implies the extinction rule 

l(h,O,l,m) = 0 for m odd. (69) 

Since only first-order satellites occur, this means that 
the plane (h,O,l), of main reflections is free of satellites, 
as has been observed. 

9. Magnetic superspace groups 

As shown by Overhauser (1962, 1968), the ground 
state of an electron gas in a crystal does not necessarily 
have a uniform spin and charge distribution, but may 
show charge-density waves (CDW) and/or spin-density 
waves (SDW). We have already seen that CDW's may 
lead to an incommensurate crystal phase. The same 
can occur in magnetic crystals through SDW's. 
Actually, incommensurability was discovered first in 
magnetic systems, and the canonical example of an 
incommensurate magnetic crystal, that of chromium, 
will be considered further to illustrate the present 
approach. A magnetic crystal can be described by a 
(scalar) charge density p(r) and by a spin density S(r) 
[see e.g. Arrot (1966)], which transforms like an axial 
vector field, changing sign under time inversion. In the 
magnetic group approach [see Opechowski & Guc- 
cione (1965)] for describing the symmetry of magnetic 
crystals one considers as allowed transformations pairs 
(g,e) of a Euclidean transformation g = {R Iv} E E(3) 
and an element of the time-inversion group 0; e = 1 
denotes the unit element and e = - 1  the time inversion. 
The corresponding transformation law of S(r) is given 
by 

(g,e) S(r) = e(det R) R S ( g - '  r), (70) 

whereas for p(r) one simply has 

(g,e) p(r) = p(g- '  r). (71) 

The magnetic symmetry group, M, of the crystal is 
the group of all pairs (g,e) leaving the charge and the 
spin density of the crystal invariant. This group is a 
three-dimensional magnetic space group in the com- 
mensurate case [see Opechowski & Guccione (1965) 
for more details]. In the incommensurate case, this is 
no longer true. If the corresponding charge density still 
has a three-dimensional space-group symmetry, then 
one can take into account the magnetic incommensur- 
ability by allowing additional transformations in the 
spin space only; one then gets so-caUed spin space 
groups [see Litvin & Opechowski (1974)], magnetic 
space groups being a particular case of spin space 
groups. The situation is different when the charge 
density itself is that of an incommensurate crystal 
phase. Such a case is the normal one when incom- 
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mensurate SDW's  interact with localized magnetic 
moments at atomic positions. The superspace-group 
approach can be generalized to incommensurate 
magnetic crystals also. 

The magnetic superspace group, M, is the magnetic 
symmetry group of the supercrystal charge and spin 
density. It is this group that we consider as the correct 
characterization of the symmetry of an incom- 
mensurate magnetic crystal. The symmetry condition 
for an element ({RIv}, e) = ({REIve}, {Rt+_vt}, e) of M 
expressed in terms of the Fourier components is given 
by (11) and by 

e(det Re)  R e S(k) = S(k') e ~R~.° (72) 

with k = (k,kt) and R k  = (k',k}). The theory of 
magnetic superspace groups can also be formulated in 
terms of spin arrangements as defined in Opechowski 
& Guccione (1965) and Litvin & Opechowski (1974) 
if localized magnetic moments are considered defined 
at the atomic positions of the crystal. In that case k' ---- 
R e k + K, k~ = R~k and an additional phase factor 
exp(iKrj,) appears as in (19). Let us not go into details. 
The aim of this section was not to give a full theory, 
but only to introduce the concepts needed for approach- 
ing on a concrete example the interplay between crystal 
structure and magnetic symmetry in an incommensurate 
phase. In what follows we shall adopt the standard 
notation: (g,1) = g and (g, i)  = g ' .  

10. M a g n e t i c  s u p e r s p a c e - g r o u p  s y m m e t r y  o f  Cr 

Our analysis is based on those of Tsunoda, Mori, 
Kunitomi, Teraoka & Kanamori  (1974), Eagen & 
Werner (1975) and Pynn, Press & Shapiro (1976). For 
less-recent references the reader is referred to the review 
paper of Arrot  (1966). Cr is paramagnetic with b.c.c. 
structure above T N = 312 K. Below this temperature 
the metal shows incommensurate SDW's.  Between 312 
and 122 K (phase AFt )  the basic structure is ortho- 
rhombic (space group I m m m )  and the magnetic 
structure is nearly antiferromagnetic. In the single- 
domain case, the fundamental SDW wave vector Q and 
the (transverse) polarization are directed along the 
cubic axes. At  122 K there is a phase transition to the 
A F  2 phase which has tetragonal basic structure (space 
group 14 /mmm)  and a nearly antiferromagnetic 
structure with a longitudinal incommensurate SDW. 
In both A F  1 and A F  2 phases a longitudinal displacive 
modulation is observed with wave vector 2Q. In all 
phases there is one atom per unit cell (of the basic 
structure), chosen at the origin. As reference system we 
take the orthogonal a, b, c of the body-centered lattice 
A. Then a primitive basis of it is 

[ i  1 1~ [ 1  ] I'~ 1 I- al = ~z,~,~), a2 = ~,~,~J and a 3 : ( ~ , ~ , ½ )  (73) 

and its reciprocal basis is 

al* = (0,1,1),,  a2* = (1,0,1), and a~' = (1,1,0),. (74) 

If the z axis is the unique tetragonal axis, one has q = 
2Q = 2(0, 0, 1 - e), with e ~_ 0.05. In the AF~ phase we 
take the spin polarization along the x axis (Sy = S~ = 0). 

To consider the non-magnetic superspace group one 
disregards the spins and determines the group leaving 
the charge density invariant (i.e. the symmetry group 
of the crystal with displacive modulation) along the 
same lines as in the previous examples. The Fourier 
spectrum of p(r) is described by an integral linear com- 
bination of four basis vectors a*, a 2, a* as above, and 
a4* = (0,0,2e),. Hence the matrix a~ (where the 
subscript c recalls that it is expressed on a centered 
basis) is given by 

a c = (O,O,2e). (75) 

The superspace is four-dimensional and spanned by 
a, b, ¢ in V e and by d (in Vt). The lattice 27 has as basis: 

[ ]  1 1 7A [ 1  ] ! 7,~ [ 1  1 ] ,,N a~ = ~,~,~,~j, a2 = ~,~,~,~j, a3 = ~,~,~,~], a4 = (0,0,0,1), 
(76) 

and the reciprocal basis is: 

a* = (0,1,1,0),, a* = ( l ,0,1,0) , ,  a* = (1,1,0,0),, 

a* = (0,0,2c,1),. (77) 

m m with In the A F  1 phase the Bravais class of 27 is pl,~ 1 r 
holohedry generated by (R  E, RI) = (mx, 1), (mr, 1) and 
(m z, 1). In the A F  2 phase the Bravais class i~ p~4/mmm 

" ~ - -  1 [11 
with holohedry generated by (4 e, i), (m e, 1) and (mx, 1). 
Using (18) w i t h j  = j '  = 1, rj = 0 and f~(q) parallel to 
the z axis, one verifies easily that the generators of the 
holohedry leave the modulation invariant with v = 0. 
Hence one gets the superspace groups 

GAF t = Plnlmm and Gar 2 = p l4 /mmm (78) 1 i  - - 1  111" 

In deriving this result the phase of the modulation was 
chosen in such a way that 

f l ( -q )  = - f l (q) .  (79) 

Considering now the spin distribution as well, one takes 
into account the condition on the magnetic superspace 
group to leave the charge density invariant by requiring 
that 

M _ G x 0, i = 1,2, (80) 

with G = GAp i as above. For  v, a translation of M, 
condition (72) becomes 

eS(k) = S(k) e ~k~. (81) 

In the case of a single Q-SDW we have 

k =  (0,0,  1 -- e), 1 , = ~(a  1 + a* --  a~' -- a*) 
implying 

k 1 , : ~ ( a  I + a * - a ' ~ - a * )  
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and thus ka i = ~z for i = 1, 2, 3, 4. Therefore each of the 
basis vectors of ~r is to be combined with e = --1. The 
same is true for the 3Q-SDW (Pynn, Press & Shapiro, 
19 76). Therefore the magnetic lattice translations of M 
are generated by 

a~ -- (a~, -1 ) ,  i =  1, 2, 3, 4 (82) 

both in the A F  1 and in the A F  2 phase. 
To determine the magnetic point group, notice that 

for both the 1 Q- and the 3Q-SDW's and R from the 
point group of GaF , one has k' = R e k and v (R)  = 0; 
this reduces (72) to 

e(det Re) R e S(k) = S(R e k). (83) 

In the A F  1 phase S(k) is parallel to the x axis and left 
invariant by (m_~, 1)' and (my, 1)'. It is also left 
invariant by (m~, 1) provided the phase relation 

S x(--k ) = Sx(k) (84) 

is satisfied. This relation is plausible if one considers the 
phase relation of the corresponding CDW, but in the 
papers on which this analysis is based no direct 
experimental evidence for it is quoted. In any case, if 
(84) is satisfied, then the magnetic superspace group for 
the AF~ phase is 

M Ar~ = p ,  ~m I' m' m i r (85 )  

whose generators are a t, a~, a~ (indicated by the 
subscript p), a~ (indicated by the subscript b), (m x, 1)', 
(my, 1)' and (mz, i). 

In the A F  2 phase S(k) is parallel to the z axis and left 
invariant [according to (72)] by (4 z, 1) and (m x, 1)'. 
Again, if the phase_relation (84) holds, then it is also left 
invariant by (mz, 1). In this case the magnetic super- 
space group for the A F  2 phase is 

Mar, = ]Mp4/m-m' ml'. (86) -- bl 1 1 

In the present derivation we started from a non- 
magnetic basic structure, we determined the non- 
magnetic superspace group first and derived the 
magnetic superspace group. One could have started 
from a magnetic basic structure, which is the anti- 
ferromagnetic approximation to the actual structure, 
considering then CDW's and SDW's modulations: the 
final result would have been the same. 

Furthermore, the general theory requires that the 
basic magnetic space group M e has to be a (proper or 
improper) subgroup of the magnetic space group of the 
basic structure. In the present case they coincide in 
both the A F t  and the A F  2 phases. One has 

MO,4F 1 : MEAF, : Ip m ' m ' m  

and MOAF, = Mea,~ , = Ip 4 / m m ' m ' ,  (87) 

and this is very satisfactory. 

11. Concluding remarks 

Crystals whose charge densities, p, have Fourier com- 
ponents with wave vectors expressible as linear com- 
binations with integral coefficients of a finite number 
of fundamental reciprocal-space vectors admit a super- 
space group as symmetry. This group is uniquely 
determined (within its equivalence class) by the given 
charge density p. 

The examples discussed here show that the extension 
from the Euclidean three-dimensional space to the 
Euclidean (3 + d)-dimensional superspace is meaningful 
and increases insight into the structural relations 
occurring in incommensurate crystal phases. This is 
particularly the case in the point-atom approximation 
and if one starts from a so-called basic structure. This 
basic structure has a three-dimensional space-group 
symmetry in all the cases considered here and represents 
a kind of unperturbed state of a system in which incom- 
mensurability can be ascribed to interactions considered 
as perturbation. 

In part II are considered cases in which the natural 
basic structure is already an incommensurate one and 
requires a superspace-group description for its 
symmetry for the reasons explained in this paper. 

The concept of basic structure is not always a well 
defined one, in particular for systems with a poor degree 
of localizability. The superspace-group symmetry, 
however, does not depend on the ambiguity in the basic 
structure concept. This is true in quite the same way as 
the properties of a total Hamiltonian are independent 
from the ambiguity of what is considered its unperturbed 
part. It has been shown that the generalization to the 
magnetic symmetry case is also meaningful and does 
not lead to great problems. 

The authors are indebted to H. B6hm for kindly 
sending a copy of his Habili tationsschrif t .  Stimulating 
contacts with P. M. de Wolff and his research team are 
gratefully acknowledged. 

References 

AALST, W. VAN, DEN HOLLANDER, J., PETERSE, W. J. A. M. 
DE WOLFE, P. M. (1976). Acta Cryst. B32, 47-58 .  

ARROT, A. (1966). In Magnetism, Vol. IIB, edited by G. T. 
RADO & H. SUHL, pp. 295-416. New York: Academic 
Press. 

BOHM, H. (1977). Line Erweiterte Theorie der Satelliten- 
reflexe und die Bestimmung der modulierten Struktur des 
Natriumnitrits. Habilitationsschrift, Univ. Mfinster. 

EAGEN, C. F. & WERNEK, S. A. (1975). Solid State 
Commun. 16, 1113-1116. 

IIZUMI, M., AXE, J. D., SHIRANE, G. & SHIMAOKA, K. 
(1977). Phys. Rev. B, 15, 4392-4411. 

JANNER, A. (1977). In Group Theoretical Methods in 
Physics, edited by R. T. SHARP & B. KOLMAN, pp. 9-30. 
New York: Academic Press. 



408 SYMMETRY OF INCOMMENSURATE CRYSTAL PHASES. I 

JANNER, A. & JANSSEN, T. (1977). Phys. Rev. B, 15, 643- 
658. 

JANNER, A. & JANSSEN, T. (1979). Physica, 99A, 47-76. 
JANh~R, A. & JANSSEN, T. (1980). Acta Cryst. A36, 408- 

415. 
JANNER, A., JANSSEN, T. & DE WOLFF, P. M. (1979). 

Modulated Structures-1979 ( Kailua-Kona, HawaiO. Am. 
Inst. Phys. Conf. Proc. 53, 81-83. 

JANNER, A., JANSSEN, T. & DE WOLFF, P. M. (1980). 
(3 + d)-Dimensional Bravais Classes. To be published. 

JANSSEN, T. (1977). In Electron-Phonon Interactions and 
Phase Transitions, edited by T. RISTE, pp. 172-180. 
New York: Plenum Press. 

KUCHARCZYK, D., PIETRASKO, A. & LUKASZEWICZ, K. 
(1978). Acta Cryst. A34, S16. 

LITVlN, D. B. & OPECHOWSKI, W. (1974). Physica, 76, 
538-554. 

MONCTON, D. E., AXE, J. D. & DISALVO, F. J. (1977). 
Phys. Rev. B, 16, 801-819. 

OPECHOWSKI, W. & GUCCIONE, R. (1965). In Magnetism, 
Vol. IIA, edited by G. T. RADO & H. SUHL, pp. 105--165. 
New York: Academic Press. 

OVERHAUSER, A. W. (1962). Phys. Rev. 128, 1437-1452. 
OVERHAUSER, A. W. (1968). Phys. Rev. 167, 691-698. 
PYNN, R., PRESS, W. & SHAPIRO, S. M. (1976). Phys. Rev. B, 

13, 295-298. 
TSUNODA, Y., MORI, M., KUNITOMI, N., TERAOKA, Y. & 

KANAMORI, J. (1974). Solid State Commun. 14, 287- 
289. 

WOLFF, P. M. DE (1974). Acta Cryst. A30, 777-785. 
WOLFF, P. M. DE (1977). Acta Cryst. A33, 493-497. 

Acta Cryst. (1980). A36, 408-415 

Symmetry of Incommensurate Crystal Phases. II. Incommensurate Basic Structure 

BY A. JANNER AND T. JANSSEN 

Institute for Theoretical Physics, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 

(Received 14 July 1979; accepted 5 November 1979) 

Abstract 

In this second part [part !: Acta Cryst. (1980), A36, 
399-408] the superspace-group approach is formulated 
for a class of crystals (called composite crystals) which 
involve a basic structure composed of subsystems, each 
one having three-dimensional space-group symmetry, 
but being mutually incommensurate. By taking into 
account the interaction among these subsystems, or 
other second-order effects, one is led to the actual 
structure, which very often is modulated, and in any 
case incommensurate. Neither the basic structure nor 
the actual one has a three-dimensional space-group 
symmetry but both allow a superspace-group charac- 
terization of their symmetry properties. The aim of the 
present paper is to show how these concepts apply in 
practice. Accordingly, two composite crystals, exten- 
sively studied in the literature, are considered from 
the present point of view: the organic compound 
(TTF)7Is_ x, i.e. C42H2sS2s.Is_x, and the polymercury 
cation compound Hg3_ ~ AsF 6. The regularities found in 
these two compounds are interpreted and fit naturally 
with the corresponding superspace-symmetry groups. 

1. Introduction 

In a previous paper (Janner & Janssen, 1980), here- 
after denoted by I, incommensurability was considered 
as existing between a so-called basic structure (which 
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does not necessarily exist as such) with space-group 
symmetry and a periodic deformation (modulation) of 
this basic structure. In the present paper we discuss the 
case where it is not possible to define a basic structure 
with three-dimensional space-group symmetry. This 
happens, for example, when a crystal consists of several 
interpenetrating subsystems, each of which has the 
structure of a, possibly modulated, crystal, the basic 
structures of the different subsystems being mutually 
incommensurate. The whole crystal can then no longer 
be seen as arising from a modulation of a basic struc- 
ture with space-group symmetry. 

In the following we shall first analyze the symmetry 
of the basic structure (§2), which is a (3 + d0)-dimen- 
sional superspace group and express the relation of 
superspace-group elements with those of the space 
groups of the subsystems. We then consider in §3 the 
symmetry of the modulated crystal, which is again a 
superspace group [now in (3 + d) dimensions]. Finally, 
in §§4 and 5 the results obtained are applied to two 
examples: (TTF)~Is_ x and Hg3_sAsF ~. 

2. Symmetry of the basic structure of the composite 
crystal 

Suppose that the basic structure consists of N sub- 
systems labelled by v. The positions of the atoms in the 
vth subsystem are 

ro(nv, vj) = nv + rvj, (1) 
© 1980 International Union of Crystallography 


